您的位置 首页 发布

51单片机对无线模块nRF24L01简略的操控收发程序

它的一些物理特性如工作频段、供电电压、数据传输速率就不详细介绍了,直接上代码。1.首先是发送端://DefineSPIpins#includereg5…

它的一些物理特性如作业频段、供电电压、数据传输速率就不具体介绍了,直接上代码。

1.首先是发送端:

// Define SPI pins#include #define uchar unsigned char/***************************************************/#define TX_ADR_WIDTH   5  // 5字节宽度的发送/接纳地址#define TX_PLOAD_WIDTH 4  // 数据通道有用数据宽度sbit LED = P2^1;sbit KEY1 = P3^1;sbit KEY2 = P3^2;uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01};  // 界说一个静态发送地址uchar RX_BUF[TX_PLOAD_WIDTH];uchar TX_BUF[TX_PLOAD_WIDTH];uchar flag;uchar DATA = 0x01;uchar bdata sta;sbit  RX_DR     = sta^6;sbit  TX_DS     = sta^5;sbit  MAX_RT = sta^4;sbit CE =  P1^5;sbit CSN=  P1^4;sbit SCK=  P1^3;sbit MOSI= P1^2;sbit MISO= P1^1;sbit IRQ = P1^0;// SPI(nRF24L01) commands#define READ_REG    0x00  // Define read command to register#define WRITE_REG   0x20  // Define write command to register#define RD_RX_PLOAD 0x61  // Define RX payload register address#define WR_TX_PLOAD 0xA0  // Define TX payload register address#define FLUSH_TX    0xE1  // Define flush TX register command#define FLUSH_RX    0xE2  // Define flush RX register command#define REUSE_TX_PL 0xE3  // Define reuse TX payload register command#define NOP         0xFF  // Define No Operation, might be used to read status register// SPI(nRF24L01) registers(addresses)#define CONFIG      0x00  // Config register address#define EN_AA       0x01  // Enable Auto Acknowledgment register address#define EN_RXADDR   0x02  // Enabled RX addresses register address#define SETUP_AW    0x03  // Setup address width register address#define SETUP_RETR  0x04  // Setup Auto. Retrans register address#define RF_CH       0x05  // RF channel register address#define RF_SETUP    0x06  // RF setup register address#define STATUS      0x07  // Status register address#define OBSERVE_TX  0x08  // Observe TX register address#define CD          0x09  // Carrier Detect register address#define RX_ADDR_P0  0x0A  // RX address pipe0 register address#define RX_ADDR_P1  0x0B  // RX address pipe1 register address#define RX_ADDR_P2  0x0C  // RX address pipe2 register address#define RX_ADDR_P3  0x0D  // RX address pipe3 register address#define RX_ADDR_P4  0x0E  // RX address pipe4 register address#define RX_ADDR_P5  0x0F  // RX address pipe5 register address#define TX_ADDR     0x10  // TX address register address#define RX_PW_P0    0x11  // RX payload width, pipe0 register address#define RX_PW_P1    0x12  // RX payload width, pipe1 register address#define RX_PW_P2    0x13  // RX payload width, pipe2 register address#define RX_PW_P3    0x14  // RX payload width, pipe3 register address#define RX_PW_P4    0x15  // RX payload width, pipe4 register address#define RX_PW_P5    0x16  // RX payload width, pipe5 register address#define FIFO_STATUS 0x17  // FIFO Status Register register addressvoid blink(char i);/**************************************************函数: init_io()描绘:初始化IO/**************************************************/void init_io(void){CE  = 0;        // 待机CSN = 1;        // SPI制止SCK = 0;        // SPI时钟置低IRQ = 1;        // 中止复位LED = 1;        // 封闭指示灯}/**************************************************//**************************************************函数:delay_ms()描绘:推迟x毫秒/**************************************************/void delay_ms(uchar x){uchar i, j;i = 0;for(i=0; i射频通道0x40SPI_RW_Reg(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH);  // 接纳通道0挑选和发送通道相同有用数据宽度SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);            // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f);              // CRC使能,16位CRC校验,上电,接纳形式delay_ms(150);CE = 1;                                            // 拉高CE发动接纳设备}/**************************************************//**************************************************函数:TX_Mode()描绘:这个函数设置nRF24L01为发送形式,(CE=1继续至少10us),130us后发动发射,数据发送结束后,发送模块主动转入接纳形式等候应对信号。/**************************************************/void TX_Mode(uchar * BUF){CE = 0;SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);     // 写入发送地址SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);  // 为了应对接纳设备,接纳通道0地址和发送地址相同SPI_Write_Buf(WR_TX_PLOAD, BUF, TX_PLOAD_WIDTH);                  // 写数据包到TX FIFOSPI_RW_Reg(WRITE_REG + EN_AA, 0x01);       // 使能接纳通道0主动应对SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01);   // 使能接纳通道0SPI_RW_Reg(WRITE_REG + SETUP_RETR, 0x0a);  // 主动重发延时等候250us+86us,主动重发10次SPI_RW_Reg(WRITE_REG + RF_CH, 40);         // 挑选射频通道0x40SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07);    // 数据传输率1Mbps,发射功率0dBm,低噪声放大器增益SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e);      // CRC使能,16位CRC校验,上电delay_ms(150);CE = 1;}/**************************************************//**************************************************函数:Check_ACK()描绘:查看接纳设备有无接纳到数据包,设定没有收到应对信号是否重发/**************************************************/uchar Check_ACK(bit clear){delay_ms(200);while(IRQ);sta = SPI_RW(NOP);                    // 回来状况寄存器if(TX_DS){blink(3);}//blink(5);if(MAX_RT)if(clear)                         // 是否铲除TX FIFO,没有铲除在复位MAX_RT中止标志后重发SPI_RW(FLUSH_TX);SPI_RW_Reg(WRITE_REG + STATUS, sta);  // 铲除TX_DS或MAX_RT中止标志IRQ = 1;if(TX_DS)return(0x00);elsereturn(0xff);}/**************************************************//**************************************************函数:CheckButtons()描绘:查看按键是否按下,按下则发送一字节数据/**************************************************/void CheckButtons(){if(KEY1 == 0){delay_ms(20);if(KEY1 == 0){TX_BUF[0] = 1;          // 数据送到缓存//TX_BUF[0] = 0xff;          // 数据送到缓存TX_Mode(TX_BUF);            // 把nRF24L01设置为发送形式并发送数据            //LED = ~DATA;                // 数据送到LED显现Check_ACK(0);               // 等候发送结束,铲除TX FIFOdelay_ms(250);delay_ms(250);}}if(KEY2 == 0){delay_ms(20);if(KEY2 == 0){TX_BUF[0] = 2;          // 数据送到缓存//TX_BUF[0] = 0xff;          // 数据送到缓存TX_Mode(TX_BUF);            // 把nRF24L01设置为发送形式并发送数据            //LED = ~DATA;                // 数据送到LED显现Check_ACK(0);               // 等候发送结束,铲除TX FIFOdelay_ms(250);delay_ms(250);}}}/**************************************************/void blink(char i){while(i--){LED = 1;delay_ms(500);LED = 0;delay_ms(500);}}/**************************************************函数:main()描绘:主函数/**************************************************/void main(void){init_io();                      // 初始化IOwhile(1){CheckButtons();           // 按键扫描}}

这段代码首要先看大局变量,经过对IO口的赋值(如按键、led、无线模块的端口CE/IRQ等)能够知道电路图的制作。

然后进入main函数,初始化后便是一段按键扫描函数,晒干依据界说的按键,触发后发送相应的数据,不必过分深究晒干对寄存器的装备是完结了什么意图。其间晒干的blink函数是用来判别TX_DS是否为真而业绩led灯的,这个标志位为真阐明数据发送成功。

2.然后是接纳端

// Define SPI pins#include #include #define uchar unsigned char#define uint  unsigned int#define ulong unsigned long/***************************************************/#define TX_ADR_WIDTH   5  // 5字节宽度的发送/接纳地址#define TX_PLOAD_WIDTH 4  // 数据通道有用数据宽度sbit LED = P2^1;uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01};  // 界说一个静态发送地址uchar RX_BUF[TX_PLOAD_WIDTH];uchar TX_BUF[TX_PLOAD_WIDTH];uchar flag;uchar DATA = 0x01;uchar bdata sta;sbit  RX_DR     = sta^6;sbit  TX_DS     = sta^5;sbit  MAX_RT = sta^4;sbit CE =  P1^5;sbit CSN=  P1^4;sbit SCK=  P1^3;sbit MOSI= P1^2;sbit MISO= P1^1;sbit IRQ = P1^0;// SPI(nRF24L01) commands#define READ_REG    0x00  // Define read command to register#define WRITE_REG   0x20  // Define write command to register#define RD_RX_PLOAD 0x61  // Define RX payload register address#define WR_TX_PLOAD 0xA0  // Define TX payload register address#define FLUSH_TX    0xE1  // Define flush TX register command#define FLUSH_RX    0xE2  // Define flush RX register command#define REUSE_TX_PL 0xE3  // Define reuse TX payload register command#define NOP         0xFF  // Define No Operation, might be used to read status register// SPI(nRF24L01) registers(addresses)#define CONFIG      0x00  // Config register address#define EN_AA       0x01  // Enable Auto Acknowledgment register address#define EN_RXADDR   0x02  // Enabled RX addresses register address#define SETUP_AW    0x03  // Setup address width register address#define SETUP_RETR  0x04  // Setup Auto. Retrans register address#define RF_CH       0x05  // RF channel register address#define RF_SETUP    0x06  // RF setup register address#define STATUS      0x07  // Status register address#define OBSERVE_TX  0x08  // Observe TX register address#define CD          0x09  // Carrier Detect register address#define RX_ADDR_P0  0x0A  // RX address pipe0 register address#define RX_ADDR_P1  0x0B  // RX address pipe1 register address#define RX_ADDR_P2  0x0C  // RX address pipe2 register address#define RX_ADDR_P3  0x0D  // RX address pipe3 register address#define RX_ADDR_P4  0x0E  // RX address pipe4 register address#define RX_ADDR_P5  0x0F  // RX address pipe5 register address#define TX_ADDR     0x10  // TX address register address#define RX_PW_P0    0x11  // RX payload width, pipe0 register address#define RX_PW_P1    0x12  // RX payload width, pipe1 register address#define RX_PW_P2    0x13  // RX payload width, pipe2 register address#define RX_PW_P3    0x14  // RX payload width, pipe3 register address#define RX_PW_P4    0x15  // RX payload width, pipe4 register address#define RX_PW_P5    0x16  // RX payload width, pipe5 register address#define FIFO_STATUS 0x17  // FIFO Status Register register address//--界说SPI要运用的 IO--//sbit MOSIO = P3^4;sbit R_CLK = P3^5;sbit S_CLK = P3^6;void blink(char i);//--大局函数声明--///**************************************************函数: init_io()描绘:初始化IO/**************************************************/void init_io(void){CE  = 0;        // 待机CSN = 1;        // SPI制止SCK = 0;        // SPI时钟置低IRQ = 1;        // 中止复位LED = 1;        // 封闭指示灯}/**************************************************//**************************************************函数:delay_ms()描绘:推迟x毫秒/**************************************************/void delay_ms(uchar x){uchar i, j;i = 0;for(i=0; i

经过main函数能够知道晒干经过对RX_BUF[0]值的判别做相应的LED业绩,业绩的次数不同。

假如要收发字符串直接往TX_BUF数组晒干寄存巨细为TX_PLOAD_WIDTH的字符,在RX_BUF就能够接纳到相应的数据了。

代码有删减过一点,不过经过用KEIL进行的编译调试,收发基本是没有问题的。。鄙人亲侧过。

声明:本文内容来自网络转载或用户投稿,文章版权归原作者和原出处所有。文中观点,不代表本站立场。若有侵权请联系本站删除(kf@86ic.com)https://www.86ic.net/changshang/fabu/264865.html

为您推荐

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部