一、导言
光电耦合器是以光为前言传输电信号的一种电一光一电转化器材。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用通明绝缘体阻隔。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
二、作业原理
耦合器以光为前言传输电信号。它对输入、输出电信号有杰出的阻隔效果,所以,它在各种电路中得到广泛的运用。现在它已成为种类最多、用处最广的光电器材之一。光耦合器一般由三部分组成:光的发射、光的接纳及信号扩大。输入的电信号驱动发光二极管(LED),使之宣布必定波长的光,被光探测器接纳而发生光电流,再经过进一步扩大后输出。这就完成了电—光—电的转化,然后起到输入、输出、阻隔的效果。因为光耦合器输入输出间彼此阻隔,电信号传输具有单向性等特色,因此具有杰出的电绝缘才能和抗搅扰才能。又因为光耦合器的输入端归于电流型作业的低阻元件,因此具有很强的共模按捺才能。所以,它在长线传输信息中作为终端阻隔元件能够大大进步信噪比。在计算机数字通讯及实时操控中作为信号阻隔的接口器材,能够大大添加计算机作业的可靠性。
1.长处
光耦合器的首要长处是:信号单向传输,输入端与输出端彻底完成了电气阻隔,输出信号对输入端无影响,抗搅扰才能强,作业安稳,无触点,运用寿命长,传输效率高。光耦合器是70年代发展起来产新式器材,现已广泛用于电气绝缘、电平转化、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号阻隔、级间阻隔 、脉冲扩大电路、数字外表、远距离信号传输、脉冲扩大、固态继电器(SSR)、仪器外表、通讯设备及微机接口中。
好坏判别
用数字万用表的二极管丈量档,红表笔接光耦的“1”脚,黑表笔接光耦的“2”脚(即便光耦的发光二极管正导游通)此刻万用表显现大约是0.981V,红表笔接光耦的“3”脚,黑表笔接光耦的“4”脚,此刻万用表显现大约是0.700V,证明光耦是好的。
实用技巧
耦以光信号为前言来完成电信号的耦合与传递,输入与输出在电气上彻底阻隔,具有抗搅扰功能强的特 点。关于既包含弱电操控部分,又包含强电操控部分的工业运用测控体系,选用光耦阻隔能够很好地完成弱电和强电的阻隔,到达抗搅扰意图。可是,运用光耦阻隔需求考虑以下几个问题:
①光耦直接用于阻隔传输模拟量时,要考虑光耦的非线性问题;
②光耦阻隔传输数字量时,要考虑光耦的呼应速度问题;
③假如输出有功率要求的话,还得考虑光耦的功率接口规划问题。
(1):光电耦合器非线性的战胜
光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来标明;输出端是光敏三极管,因此光敏三极管的伏安特性便是它的输出特性。由此可见,光电耦合器存在着非线性作业区域,直接用来传输模拟量时精度较
解决办法之一,运用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟从器A1和A2组成。假如T1和T2是同类型同批次的光电耦合器,能够以为他们的非线性传输特性是彻底一致的,即K1(I1)=K2(I1),则扩大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,运用T1和T2电流传输特性的对称性,运用反应原理,能够很好的补偿他们本来的非线性。
另一种模拟量传输的解决办法,便是选用VFC(电压频率转化)办法。现场变送器输出模拟量信号(假定电压信号),电压频率转化器将变送器送来的电压信号转化成脉冲序列,经过光耦阻隔后送出。在主机侧,经过一个频率电压转化电路将脉冲序列还原成模拟信号。此刻,相当于光耦阻隔的是数字量,能够消除光耦非线性的影响。这是一种有用、简略易行的模拟量传输办法。
当然,也能够挑选线性光耦进行规划,如精细线性光耦TIL300,高速线性光耦6N135/6N136。线性光耦一般价格比一般光耦高,可是运用方便,规划简略;跟着器材价格的下降,运用线性光耦将是趋势。
(2):进步光电耦合器的传输速度
当选用光耦阻隔数字信号进行操控体系规划时,光电耦合器的传输特性,即传输速度,往往成为体系最大数据传输速率的决定因素。在许多总线式结构的工业测控体系中,为了避免各模块之间的彼此搅扰,一起不下降通讯波特率,咱们不得不选用高速光耦来完成模块之间的彼此阻隔。常用的高速光耦有6N135/6N136,6N137/6N138。可是,高速光耦价格比较高,导致规划本钱进步。这儿介绍两种办法来提
高一般光耦的开关速度。因为光耦本身存在的分布电容,对传输速度形成影响,光敏三极管内部存在着分布电容Cbe和Cce。因为光耦的电流传输比较低,其集电极负载电阻不能太小,不然输出电压的摆幅就受到了约束。可是,负载电阻又不宜过大,负载电阻RL越大,因为分布电容的存在,光电耦合器的频率特性就越差,传输延时也越长。
用2只光电耦合器T1,T2接成互补推挽式电路,能够进步光耦的开关速度。当脉冲上升为“1”电平常,T1截止,T2导通。相反,当脉冲为“0”电平常,T1导通,T2截止。这种互补推挽式电路的频率特性大大优于单个光电耦合器的频率特性。
此外,在光敏三极管的光敏基极上添加正反应电路,这样能够大大进步光电耦合器的开关速度。经过添加一个晶体管,四个电阻和一个电容,试验证明,这个电路能够将光耦的最大数据传输速率进步10倍左右。
(3):光耦的功率接口规划
微机测控体系中,常常要用到功率接口电路,以便于驱动各种类型的负载,如直流伺服电机、步进电机、各种电磁阀等。这种接口电路一般具有带负载才能强、输出电流大、作业电压高的特色。工程实践标明,进步功率接口的抗搅扰才能,是确保工业自动化设备正常运转的要害。
就抗搅扰规划而言,许多场合下,既能选用光电耦合器阻隔驱动,也能选用继电器阻隔驱动。一般情况下,关于那些呼应速度要求不很高的启停操作,咱们选用继电器阻隔来规划功率接口;关于呼应时刻要求很快的操控体系,选用光电耦合器进行功率接口电路规划。这是因为继电器的呼应延迟时刻需几十ms,而光电耦合器的延迟时刻一般都在10us之内,一起选用新式、集成度高、运用方便的光电耦合器进行功率驱动接口电路规划,能够到达简化电路规划,下降散热的意图。
关于沟通负载,能够选用光电可控硅驱动器进行阻隔驱动规划,例如TLP541G,4N39。光电可控硅驱动器,特色是耐压高,驱动电流不大,当沟通负载电流较小时,能够直接用它来驱动。当负载电流较大时,能够外接功率双向可控硅。其间,R1为限流电阻,用于约束光电可控硅的电流;R2为耦合电阻,其上的分压用于触发功率双向可控硅。当需求对输出功率进行操控时,能够选用光电双向可控硅驱动器,例如MOC3010。
2. 根本作业特性(以光敏三极管为例)
(1)、共模按捺比很高
在光电耦合器内部,因为发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压经过极间耦合电容对输出电流的影响很小,因此共模按捺比很高。
(2)、输出特性
光电耦合器的输出特性是指在必定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的联系,当IF=0时,发光二极管不发光,此刻的光敏晶体管集电极输出电流称为暗电流,一般很小。当IF>0时,在必定的IF效果下,所对应的IC根本上与VCE无关。IC与IF之间的改变成线性联系,用半导体管特性图示仪测出的光电耦合器的输出特性与一般晶体三极管输出特性类似。其测验连线如图2,图中D、C、E三根线别离对应B、C、E极,接在仪器插座上。
(3)、光电耦合器可作为线性耦合器运用。
在发光二极管上供给一个偏置电流,再把信号电压经过电阻耦合到发光二极管上,这样光电晶体管接纳到的是在偏置电流上增、减改变的光信号,其输出电流将随输入的信号电压作线性改变。光电耦合器也可作业于开关状况,传输脉冲信号。在传输脉冲信号时,输入信号和输出信号之间存在必定的延迟时刻,不同结构的光电耦合器输入、输出延迟时刻相差很大。
三、光电耦合器的分类
因为光电耦合器的种类和类型十分多,在光电子DATA手册中,其类型超越上千种,一般能够按以下办法进行分类:
1.按光途径
可分为外光路光电耦合器(又称光电断续检测器)和内光路光电耦合器。外光路光电耦合器又分为透过型和反射型光电耦合器。
2.按输出方式分
a、光敏器材输出型,其间包含光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。
b、NPN三极管输出型,其间包含沟通输入型,直流输入型,互补输出型等。
c、达林顿三极管输出型,其间包含沟通输入型,直流输入型。
d、逻辑门电路输出型,其间包含门电路输出型,施密特触发输出型,三态门电路输出型等。
e、低导通输出型(输出低电平毫伏数量级)。
f、光开关输出型(导通电阻小余10Ω)。
g、功率输出型(IGBT/MOSFET等输出)。
3.按封装方式分
可分为同轴型,双列直插型,TO封装型,扁平封装型,贴片封装型,以及光纤传输型等。
4.按传输信号分
可分为数字型光电耦合器(OC门输出型,图腾柱输出型及三态门电路输出型等)和线性光电耦合器(可分为低漂移型,高线性型,宽带型,单电源型,双电源型等)。
5.按速度分
可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或许光敏集成电路输出型)。
6.按通道分
可分为单通道,双通道和多通道光电耦合器。
7.按阻隔特性分
可分为一般阻隔光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压阻隔光电耦合器(可分为10kV,20kV,30kV等)。
8.按作业电压分
可分为低电源电压型光电耦合器(一般5~15V)和高电源电压型光电耦合器(一般大于30V)