基于XILINX的V5系列FPGA实现数据通信平台的设计-传统的数据链存在着误码率高、衰落大、干扰严重等问题,即使采用高效的信息压缩编码技术仍难以满足高光谱、激光雷达、合成孔径雷达等一系列高分载荷数据传输的带宽要求。针对现有技术的不足,本设计中通过引进美军成熟先进的VPX总线,构建新一代的数据通信平台,实现由传统到高速、宽带、多功能、通用性强的通信平台的跨越。
基于EP2S30 FPGA芯片实现MAC接收控制器的设计-传统的测控网是将具有各种功能的仪器通过诸如VXI、CAN等专用总线连接起来构成一套完整的测控系统。现在看来,传统的测控网主要具有四个方面的不足:一、数据传输速率有限;二、传输距离有限;三、设备数量有限;四、成本高昂。传统的测控网已经很难满足人们对大数据量,远距离和低成本的要求。
基于Altera的FPGA器件和VHDL语言实现数据采集系统的设计-传统的数据采集系统,通常采用单片机或DSP作为主要控制模块,控制ADC、存储器和其他外围电路的工作。随着数据采集对速度性能的要求越来越高,传统采集系统的弊端就越来越明显。单片机的时钟频率较低且需用软件实现数据采集,这使得采集速度和效率降低,此外软件运行时间在整个采样时间中也占很大的比例。
可编程在辅助驾驶系统中的应用-通过消除繁琐的驾驶动作,辅助驾驶还可提供更高的舒适水平。例如,传统的巡航控制允许司机设定一个固定的行驶速度,同时在需要时可手动控制。而现在的汽车则提供自动巡航控制(ACC)功能,可以自动控制油门和刹车来适应前面车辆的速度,从而与其保持安全距离。如果前面的车辆加速开走或改变行驶路径,ACC会自动返回传统巡航控制的预设速度。
几种微型传感器件的结构和原理详细介绍-和传统的传感器相比,微型传感器具有许多新特性,它们能够弥补传统传感器的不足,具有广泛的应用前景,越来越受到重视。文中详细介绍了一些微型传感器件的结构和原理,说明了微型传感器的基本性能特点和微型传感器的发展趋势。
保证汽车安全充电的电流传感器-在现代传统汽车工业高速发展的同时,环境和能源问题也日益突出。为此,人们开始不断探索和开发新能源动力的汽车,以解决当前所面临的危机。其中,具有零排放特性的电动汽车成为了各国关注的焦点和争相发展的对象。但若进行实际使用,首先需要解决的便是的充电续航问题,由此电动汽车的充电桩就应运而生了。充电桩多设于固定地点,功能类似于传统的加油站。在这些电桩中电流传感器作为一种电量测量元件,在充电过程监测和确保充电安全方面起到了重要的作用。