
一种基于FPGA实现SRRC滤波及多速率变换模块的方法介绍-卫星通信系统中,在信号发射前需要对频谱较宽的基带信号进行成形滤波处理,以改善其频谱特性,在消除码间干扰(Inter Symbol Interference,ISI)与达到最佳检测接收的前提下,提高信道的频带利用率。通信系统中采用发送端的成形滤波器和接收端的匹配滤波器共同实现升余弦滤波的效果,对信号进行滤波处理。由于平方根升余弦(Square Root Raised Cosine,SRRC)具有较快的衰减特性和较好的可实现性,一般采用SRRC滤波器实现通信系统的基带成形滤波[1]。

基于电路分割技术的查表法实现根升余弦脉冲成形滤波器FPGA设计-数字通信系统中,基带信号的频谱一般较宽,因此传递前需对信号进行成形处理,以改善其频谱特性,使得在消除码间干扰与达到最佳检测接收的前提下,提高信道的频带利用率。目前,数字系统中常使用的波形成形滤波器有平方根升余弦滤波器、高斯滤波器等。设计方法有卷积法或查表法,其中:卷积法的实现,需要消耗大量的乘法器与加法器,以构成具有一定延时的流水线结构。为降低硬件消耗,文献提出了一种分布式算法(Distributed Arithmetic,DA)的滤波器设计结构。它将传统的乘、累加运算转化为移位、累加运算,当运算数据的字宽较小时,极大地降低了硬件电路的复杂度,提高了响应速度;当运算数据的字长较长时,因其需要更多的移位迭代运算而不适合高速处理的需求。为此,文献提出了采用滤波器的多相结构与改进DA算法相结合的一种设

数控振荡器的基本原理及如何在FPGA中实现设计-本文介绍一种利用矢量旋转的CORDIC(COordination Rotation DIgital Computer)算法实现正交数字混频器中的数控振荡器(NCO)的方法。推导了CORDIC算法产生正余弦信号的实现过程,给出了在FPGA 中设计数控振荡器的顶层电路结构,并根据算法特点在设计中引入流水线结构设计。

本站为您提供的正余弦旋转变压器与线性旋转变压器基本结构和原理,当输出绕组接了负载以后,其输出电压便不再是转角的正、余弦函数。例如在图1-2中,正弦输出绕组R3-R4接有负载,其输出电压如图1-3所示,它偏离了期望的正弦值,这种现象称为输出特性的畸变。