根据CPLD器材MAXII EPM1270和PCI总线完成数据接纳卡的规划

基于CPLD器件MAXII EPM1270和PCI总线实现数据接收卡的设计-在CompactPCI端,PCI 9656提供了66MHz、64bit总线应用所需信号,可依据CompactPCI规范连接,通过简单的外部电路,可实现Hot Swa p功能。

广告

选用CPLD器材MAX7128完成温度控制系统的使用规划

采用CPLD器件MAX7128实现温度控制系统的应用设计-“温度”是各类工业控制生产中常见的、而又十分重要的控制参数。人们研制出各种针对不同控制对象的温度自动控制系统,其中软件控制算法已比较成熟,但温度控制系统的硬件构成特别是功率控制部分往往存在着硬件结构复杂,分离元件较多,结构较为封闭等问题。随着CPLD器件的大规模运用,采用CPLD器件可简化控制系统的硬件结构。本文设计了一种以8051单片机为核心的温度控制系统,该系统的控制部分由CPLD来完成,针对不同的控制对象可采用不同的控制算法,因此该控制系统具有结构开放、成本低廉、性能可靠等特点。

选用FPGA芯片EPM7032和VHDL言语完成主动交通系统的使用计划

采用FPGA芯片EPM7032和VHDL语言实现自动交通系统的应用方案-随着微电子技术的迅猛发展,可编程逻辑器件从20世纪70年代发展至今,其结构、工艺、集成度、功能、速度、性能等方面都在不断的改进和提高;另外,电子设计自动化EDA技术的发展又为可编程逻辑器件的广泛应用提供了有力的工具。

根据MAX1951完成Stratix II FPGA体系供电的设计方案

基于MAX1951实现Stratix II FPGA系统供电的设计方案-Stratix II是ALTERA公司生产的一款高性能FPGA器件。它采用TSMC的90 nm低k绝缘工艺技术生产,等价逻辑单元(LE)高达180 k,嵌入式存储器容量达到9 MB。该器件不但具有极高的性能和密度,而且还针对器件总功率进行了优化,同时可以支持高达1 Gbps的高速差分I/O信号,因而是一款超快的FPGA。该芯片中所含的高性能嵌入式DSP块的运行频率高达370 MHz。另外Stratix II还有12个可编程PLL,并具有健全的时钟管理和频率合成能力。能实现最大的系统性能。

Xilinx根据ARM的Zynq-7000和Zynq UltraScale+ MPSoC及RFSoC器材是否存在安全漏洞

Xilinx基于ARM的Zynq-7000和Zynq UltraScale+ MPSoC及RFSoC器件是否存在安全漏洞-本文试图搞清楚在 Xilinx 基于 ARM 的 Zynq-7000、Zynq UltraScale+ MPSoC 和 Zynq UltraScale+ RFSoC 器件中是否存在任何漏洞。

浅析CPLD的作业原理

浅析CPLD的工作原理-CPLD(复杂可编程逻辑器件),它是从PAL和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。

关于PLD的分类及其长处剖析

关于PLD的分类及其优点分析-可编程逻辑器件的英文全称为:programmable logic device 即PLD。PLD是做为一种通用集成电路产生的,它的逻辑功能按照用户对器件编程来确定。一般的PLD的集成度很高,足以满足设计一般的数字系统的需要。

选用编程逻辑器材操控8个LED小灯电路的规划

采用编程逻辑器件控制8个LED小灯电路的设计-演化硬件(EHW)是指能根据外部环境变化自动改变自身结构和功能的一类硬件,它把可编程逻辑器件的结构位串当作染色体,通过演化算法进行搜索,用符合要求的染色体配置可编程逻辑器件,得到要设计的硬件电路。这一研究方法能够探索新颖的电路设计方案,寻找许多未被人类发现高效的捷径;实现电路的在线自适应与容错,以适应很多应用需求对硬件的灵活性要求。它正在成为未来电路设计的发展方向。

在OpenBus体系基础上的FPGA嵌入式设计方案详解

在OpenBus体系基础上的FPGA嵌入式设计方案详解

在OpenBus系统基础上的FPGA嵌入式设计方案详解-现场可编程门阵列FPGA(Field Programmable Gate Array)是美国Xilinx公司于1984年首先开发的一种通用型用户可编程器件。FPGA内部由可绾程逻辑单元阵列、布线资源和可编程的I/O单元阵列构成,包含丰富的逻辑门、寄存器和I/O资源。目前,面向大规模可编程器件附的广泛应用,正在不断地加速电子设计技术从硬件电路设计向“软”设计的过渡。Altium Designer是传统电路设计软件Protel的高端设计版本,除了具备基本的电路原理图设计和PCB设计功能外,它的特色主要在于增强了FPGA开发功能,将电子产品的板级设计、可缩程逻辑设计和嵌入式设计开发融合在一起。

根据可编程逻辑器件完成TDICCD驱动时序发生器的规划

基于可编程逻辑器件实现TDICCD驱动时序发生器的设计-时间延时积分电荷耦合器件 (Time Delay and Integration Charge Coupled Devices) (TDICCD)是近几年发展起来的一种新型光电传感器。主要应用在低照度条件下,对低照度目标有很高的灵敏度。TDICCD通过多级积分来延长积分时间,从而提高器件的灵敏度和信噪比。

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部