STM32的优势在哪里?如何使用DMA来进行ADC操作?- STM32的优点在哪里? 除去宣传环节,细细分析。 STM32时钟不算快,72MHZ, 也不能扩展大容量的RAM FLASH, 同样没有DSP那样强大的指令集。 它的优势在哪里呢? —就在快速采集数据,快速处理上。 ARM的特点就是方便。 这个快速采集,高性能的ADC就是一个很好的体现, 12位精度,最快1uS的转换速度,通常具备2个以上独立的ADC控制器。
如何在MCU内完成ADC?-ARM的特点就是方便。 这个快速采集,高性能的ADC就是一个很好的体现,12位精度,最快1uS的转换速度,通常具备2个以上独立的ADC控制器,这意味着,STM32可以同时对多个模拟量进行快速采集,这个特性不是一般的MCU具有的。
基于FPGA专用板和MEMS强链实现SATA硬盘身份认证系统的设计-信息安全对于企业、政府、国防等部门有着极其重要的意义。一般现有的认证方法都通过存储介质保存密码,使用比较器比对输入密码正确与否,此方法保密性差,易于破解。本文通过特有的MEMS强链和百万门级的FPGA来对SATA硬盘进行身份认证。实现物理加密。密码转换为相应的密钥并以机械结构的形式成为MEMS强链的核心部位,即根据齿轮组的运行完成对密码的比较,来完成对口令的验证,利用PCI9054芯片快速完成对口令和MEMS返回值的传输.根据密码所形成的控制流由FPGA对MEMS强链进行控制。整个系统快速、简洁、安全性高。
运行中配置转换长度的并行FFT(PFFT)设计介绍-超高速快速傅里叶变换(FFT)内核是任何实时频谱监测系统的必要组成部分。随着各频段无线设备数量的迅速增长,系统必须相应加强对带宽的监测。因此,这些系统需要以更快的速度将时域转换为频域,这就要求进行更加快速的FFT运算。实际上,大多数现代监测系统往往需要使用并行FFT,实现数倍于尖端FPGA(例如赛灵思Virtex®-7)最高时钟频率的采样吞吐量,充分发挥宽带A/D转换器的优势,其可轻松获得12.5Gsps甚至更高的采样率。
采用FPGA器件实现通信软硬件验证与测试平台的开发设计-为了适应通信应用要求的多样性, 需要一种可以实现快速设计、快速验证、快速移植的软硬件验证与测试平台。该平台可以提供通信系统最基本的硬件架构、软件环境、灵活的接口以及系统可配置的设计功能,方便用户根据应用要求在该平台上设计和配置所需的通信系统,并测试该系统的功能和性能,进而直接在该平台上实现设计到设备的转化。
帮你快速了解最新的差压测量-据麦姆斯咨询报道,如今的压力传感器几乎与上世纪90年代的“运算放大器(op-amp)”一样普遍。从消费者的智能手机到世界上工艺最复杂的工厂里精密控制仪表,压力传感器的应用遍布其中。压力传感器本身并不新鲜,但究其技术和器件本身,差异却很大。本文旨在帮助设计工程师快速了解最新的差压(differential pressure,DP)测量。
基于GTI的1×3波长复用/解复用器的系统级性能分析-波分复用器和解复用器几乎是所有WDM系统和网络的主要组成部分。从传统意义上讲,多路复用/解复用器(de/mux)都属于静态器件,随着温度的变化波长范围会有少许改变。几乎在第一个静态复用/解复用器获得商用的同时,人们就梦想出现一种能实现波长快速调谐版本的复用/解复用器。快速可调的复用/解复用器可以广泛应用到各种领域,包括应用在时间/波长二维光码分多址(OCDMA)系统里的快速跳码(code hopping)技术上,从而既提高了QoS性能又增强了安全性。