根据FPGA的交流接口控制器开发

基于FPGA的交换接口控制器开发-与传统ASIC相比,FPGA和结构化ASIC的优势在于重用灵活性高、上市时间快、性能佳而成本低。FPGA和专用的IP模块可用于现有的商用AdvancedTCA平台,可用来开发可扩展的交换接口控制器(FIC),以加快产品开发的设计并使线卡方案具有鲁棒性和成本效益。

广告

根据NIOS处理器完成A/D数据收集电路的操控接口逻辑设计

基于NIOS处理器实现A/D数据采集电路的控制接口逻辑设计-在FPGA系统中,实现对外部A/D数据采集电路的控制接口逻辑,由于其逻辑功能不是很复杂,因此可采用自定义的方式。采用这种方法进行设计有两种途径。①从软件上去实现。这种方案将NIOS处理器作为一个主控制器,通过编写程序来控制数据转换电路。由于NIOS处理器的工作频率相对于外部设备来说要高出许多,故此种方法会造成CPU资源极大的浪费;②用FPGA 的逻辑资源来实现A/D采集电路的控制逻辑。FPGA有着丰富的逻辑资源和接口资源,在其中实现并行的数据采集很少会受到硬件资源的限制,在功能上,设计的接口控制逻辑相当于一个主控制器,它是针对具体的外部电路而实现的,容易满足要求、又能节约资源,提高系统性能。因此,采用硬件逻辑去实现控制将是一种较好的方式。

各种存储器接口控制器设计所面对的挑战和Xilinx的解决方案详解

各种存储器接口控制器设计所面临的挑战和Xilinx的解决方案详解- FPGA 设计人员在满足关键时序余量的同时力争实现更高性能,在这种情况下,存储器接口的设计是一个一向构成艰难而耗时的挑战。Xilinx FPGA 提供 I/O 模块和逻辑资源,从而使接口设计变得更简单、更可靠。尽管如此,I/O 模块以及额外的逻辑还是需要由设计人员在源 RTL 代码中配置、验证、执行,并正确连接到其余的 FPGA 上,经过仔细仿真,然后在硬件中验证,以确保存储器接口系统的可靠性。

根据杂乱可编程逻辑器件完成USB阻隔接口的规划

基于复杂可编程逻辑器件实现USB隔离接口的设计-大容量数据的高速传输是存储技术的研究的热点技术,而在工业环境的数据传输中抗干扰技术以及医疗设备对人身的安全也是目前研究的热门课题,USB(Universal Serial Bus)是 “通用串行总线”。它是一种应用在 PC领域的接口技术。其主要优点是:可以热插拔、携带方便、标准统一,因而得到了广泛的应用。

根据可编程逻辑器件完成SPI总线接口的使用计划

基于可编程逻辑器件实现SPI总线接口的应用方案-SPI串行通信接口是一种常用的标准接口,由于其使用简单方便且节省系统资源,很多芯片都支持该接口,应用相当广泛。SPI接口的扩展有硬件和软件两种方法, 软件模拟 SPI接口方法虽然简单方便, 但是速度受到限制,在高速且日益复杂的数字系统中,这种方法显然无法满足系统要求,所以采用硬件的方法实现最为切实可行。

选用可编程逻辑器件完成温控电路接口及其与DSP通讯接口的规划

采用可编程逻辑器件实现温控电路接口及其与DSP通信接口的设计-采用光纤陀螺的捷联惯性导航系统是一种极具发展潜力的导航系统,对于其核心部件的光纤陀螺,尤其是中高精度光纤陀螺,环境温度带来的漂移是不容忽视的,因此对系统进行温度控制很有必要。温度控制电路是整个温控系统的硬件基础,其中涉及到温度采集,与微处理器通信,串口输出,控制数模转换芯片等多个组成部分。本文提出一种高效实用的FPGA接口设计,它能够完成协调各个组成部分有序工作,准确、快速实现数据传输,严格控制信号时序等工作。

选用杂乱可编程逻辑器件完成GPIB接口的功能设计

采用复杂可编程逻辑器件实现GPIB接口的功能设计-综观现今市场上的测试仪器,不难发现 GPIB总线有重要的作用,在研制台式测试仪器的时候,客户几乎均要求具备 GPIB接口。可是在实际研发过程中,却发现 GPIB控制芯片很难购买,而且价格昂贵。而且作为测试仪器具备 GPIB的接口,一般只需要具有听、讲、串查功能,而不需要控、并查功能,这样又会造成资源与功能的浪费。所以我们尝试用 CPLD来实现GPIB接口的听、讲、串查功能,不仅可拥有自主知识产权,节省了产品的成本,而且具有很大的灵活性。

根据FPGA器材EP2C5F256C6芯片完成图画收集体系的使用计划

基于FPGA器件EP2C5F256C6芯片实现图像采集系统的应用方案-系统框图如图1所示。FPGA控制单元采用 A1tera公司Cyclone II系列的EP2C5F256C6,主要由4个部分组成——主控模块、CMOS传感器接口、RAM控制器以及EZ—USB接口控制器。传感器接口负责完成 SCCB时序控制,RAM控制器用于实现RAM读写与刷新操作的时序,USB接口模块完成主控模块与EZ—USB之间的数据读写;而主控模块负责对从EZ —USB部分接收过来的上位机命令进行解析,解析完命令后产生相应的信号控制各个对应模块,如CMOS传感器传输的图像格式、RAM的读写方式、突发长度等。

怎么扫除FPGA电源定序问题

如何排除FPGA电源定序问题-当电源定序不当时,就有可能发生闭锁失灵或电流消耗过大的现象。如果两个电源加到芯核接口和I/O接口上的电位不同时,就会出现触发闭锁。定序要求不相同的FPGA和其他元件会使电源系统设计更加复杂化。

选用Fusion FPGA完成分散炉温控体系的软硬件规划

选用Fusion FPGA完成分散炉温控体系的软硬件规划

采用Fusion FPGA实现扩散炉温控系统的软硬件设计-当前国内外温控设备以单路控制居多,只能控制一路加热没备。在国内,可以对高温设备同时多路温度监控系统的研发还是相对滞后,大多数设备都是通过RS232接口或者其他有线接口与上位机通信,而无线的监控部分很少涉及。这里提出的设计方法在现有技术基础上大胆创新,具有挑战性。硬件电路的设计采用FPGA编程的方式实现,电路更改方便,用FPGA的方式实现整个系统的自动控制,降低成本,提高精度,并利用ZigBee短距离无线传输协议实现无线远程控制。

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部