
赛灵思FPGA卷积神经网络,云中的机器学习- 人工智能正在经历一场变革,这要得益于机器学习的快速进步。在机器学习领域,人们正对一类名为“深度学习”算法产生浓厚的兴趣,因为这类算法具有出色的大数据集性能。在深度学习中,机器可以在监督或不受监督的方式下从大量数据中学习一项任务。大规模监督式学习已经在图像识别和语音识别等任务中取得巨大成功。

Deloitte称:FPGA、ASIC有望在机器学习领域中实现崛起-在2016年初,机器学习仍被视为科学实验,但目前则已开始被广泛应用于数据探勘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、语音和手写识别、战略游戏与机器人等应用领域。在这短短一年的时间内,机器学习的成长速度超乎外界预期。 DeloitteGlobal最新的预测报告指出,在2018年,大中型企业将更加看重机器学习在行业中的应用。

关于机器学习中的FPGA与SoC应用浅析- 这些新设备有两个主要市场。机器学习中的神经网络将数据分为两个主要阶段:训练和推理,并且在每个阶段中使用不同的芯片。虽然神经网络本身通常驻留在训练阶段的数据中心中,但它可能具有用于推理阶段的边缘组件。现在的问题是什么类型的芯片以及哪种配置能够产生最快、最高效的深度学习。

工业机器视觉在其他领域的应用-工业机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、电光源照 明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。这些技术在机器视觉中是并列关系,相互协调应用才能构成一个成功的工业机器视觉应用系统。

SDSoC开发环境给开发机器视觉系统提供的优势-开发机器视觉系统通常需要大量的时间来设计能执行所有重要图像采集及处理功能的电子产品。通常需要两年多的时间,这会给摄像机及系统制造商的上市进程与产品规划带来不利影响。