基于FPGA和ADS7864芯片实现控制和数字锁相倍频电路的设计-随着科学技术和国民经济的快速发展,各种工业生产对电力系统对电能质量的要求越来越高,因此,对电网参数进行实时检测与分析具有重要的意义。要解决电能质量问题,首先要建立电能质量各项指标的监测和分析系统,对电网中的各种指标进行实时更新测量和数据采集。传统的电网数据采集系统往往采用单片机或数字信号处理器(DSP)作为控制器,来控制模/数转换器(ADC)、存储器和其他外围电路的工作。
基于复杂可编程逻辑器件实现键盘接口电路的设计-无功补偿装置是用于补偿电网无功功率的不足,提高功率因数,保证供电系统安全运行和节约电能的设备,其核心是控制仪。本控制仪集无功补偿、电度量计量、电能质量监测及通信于一体,对电网参数进行实时采样与计算并把各项参数显示在LCD上,还可通过键盘进行系统参数设置,用于改变控制仪的运行模式等。
基于DSP和CPLD EPM3128芯片实现智能控制器的电路设计-群组智能控制器的核心采用DSP TMS320F2812芯片,辅以CPLD EPM3128芯片来实现键盘和液晶的时序逻辑,减少扩展芯片带来的体积问题,外围电路主要包括信号调理电路和脱扣控制电路等。为适应智能电网的无线通信,在智能控制器中添加GPRS模块,使得断路器能够更好地融入到智能电网中。
UPFC控制器IP核的主要功能及设计方案分析-统一潮流控制器(Unified Power Flow Con-troller,简称UPFC)是一种可以较大范围地控制电流使之按指定路经流动的设备,它可在保证输电线输送容量接近热稳定极限的同时又不至于过负荷。控制系统是UPFC的核心部分,它的主要功能是监测交流电网的传输和控制输出逆变波形,不但能使输出波形的频率跟定电网频率,而且可对输出波形的幅值和相位进行调节。
电网调度自动化系统结构分析-电网调度自动化系统,其基本结构包括控制中心、主站系统、厂站端(RTU)和信息通道三大部分。根据所完成功能的不同,可以将此系统划分为信息采集和执行子系统、信息传输子系统、信息
紫外线传感器对高压电网电晕放电的监测-目前针对输电线路上的电晕放电检测主要有:人工巡查检测、脉冲电流检测、红外检测、超声电晕检测和紫外检测等方法。由于电晕放电的目标小、信号弱,而且许多输电线路架设在自然条件比较差的户外时,人工巡查检测不但费时费力,而且检测效果也不好;脉冲电流检测不太适合超高电压检测,而且仪器体积较大;红外检测受日光影响大,误检率高且响应速度慢,红外能检出时,往往线路已发热,属于后期检测,不能适应现在输变电的要求;超声电晕检测在户外也很难达到理想的效果。高压电网电晕放电监测比较有效的是紫外线监测。
分布式能源微网控制保护和能量管理解决方案-微网是指能实现自我控制、保护和管理的,自制的微型电网系统,其既可并入大电网运行,又能脱离大电网独立运行。微网的出现源于分布式新能源的发展和能源高效利用的需求,其具有能源种类多样且具有间歇性,电网结构分散、运行方式复杂多变、稳定性弱等特点,这对微网的控制保护和能量管理提出了较高的要求。