dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃
导言:循环神经网络(RNNs)具有保留记忆和学习数据序列的能力。由于RNN的循环性质,难以将其所有计算在传统硬件上实现并行化。当前CPU不具有大规模并行
自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计
凭借出色的性能和功耗指标,赛灵思 FPGA 成为设计人员构建卷积神经网络的首选 XE XE XE XE 。新的软件工具可简化实现工作。人工智能正在经
人工神经网络,简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或者计算模型。其实是一种与贝叶斯网络很像的一种算法。之前看过一些内容
深度神经网络在很多任务上都已取得了媲美乃至超越人类的表现,但其泛化能力仍远不及人类。德国蒂宾根大学等多所机构近期的一篇论文对人类和 DNN 的目标识别稳健性进行了行为比较,并得到了一些有趣的见解。
要实现自主,机器人不仅仅只需要人工智能(AI),还需要很多传感器、传感器融合以及边缘实时推理。由于深度卷积神经网络的优点已得到公认,激光雷达对更为先进的数据处理的需求正在把神经网络推向新的拓扑结构,以
谢仁杰 (英特尔战略合作和创新业务部 技术经理,人工智能开放创新平台联合学者,上海 200241)摘 要:近年来在许多信号处理应用领域中,深度卷积神经网络引起了学术界和工业界很大的关注,其中 基于数
深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应用取得了巨大成功。现有的深度学习模型属于神经网络。神经网络的起源可追溯到2
DeepLearning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。KeyW
在线咨询:
邮箱: kf@86ic.com