采用UML-RT和思想平台实现嵌入式控制器的设计-在仪器仪表迅速发展的同时,计算机和网络技术也在迅速发展,PC机已经从高速增长进入到平稳发展时期,嵌入式系统的出现和广泛应用,使计算机和网络进入了后PC时代,基于嵌入式智能仪表远程监控系统作为工业控制网络重要发展方向之一。而嵌入式控制器是能够实现智能仪表远程监控的关键设备,是工业控制仪表与Internet连接的桥梁。
采用EP1C20芯片和S698IP核实现平台计算机的设计-平台计算机采用FPGA+S698IP核的方案(简称SOC),以欧比特公司的S698IP核做为主CPU,另外再把1553B总线控制器、VME总线控制器、3个带FIFO的UART整合在一起。体现了欧比特公司S698IP核灵活、优越性能。并且支持多操作系统。采用SOC设计节省昂贵的流片费用、增加系统设计的灵活性、方便修改、大大缩短设计开发的周期。
采用UML-RT和思想平台实现嵌入式控制器的设计-在仪器仪表迅速发展的同时,计算机和网络技术也在迅速发展,PC机已经从高速增长进入到平稳发展时期,嵌入式系统的出现和广泛应用,使计算机和网络进入了后PC时代,基于嵌入式智能仪表远程监控系统作为工业控制网络重要发展方向之一。而嵌入式控制器是能够实现智能仪表远程监控的关键设备,是工业控制仪表与Internet连接的桥梁。
基于Xilinx Spartan II系列FPGA器件实现IP核的设计-精简指令集计算机RISC(Reduced Instruction Set Computer)是针对复杂指令集计算机CISC(Complex Instruction Set Computer)提出的,具备如下特征1)一个有限的简单的指令集; 2)强调寄存器的使用或CPU配备大量的能用的寄存器;3)强调对指令流水线的使用。
基于可编程逻辑器件实现航姿计算机的设计-捷联惯导中的航姿计算机实现数字平台导航,需要在复杂运算的同时还能够高速、准确地完成多种传感器测量数据的采集以及航姿结果和系统状态的传送。通常的做法都是用一片或多片 DSP芯片来完成,但是当数据接口较多而且数据传输频率较高时,这类系统的实时性就难以得到保证;而 FGPA具有丰富的硬件资源,能够真正实现多模块并行工作,而且可以达到较高的工作频率。