MCS-51单片机实现与Internet交互的设计-Internet 网络通信中,TCP/IP 协议簇非常庞大,需要占用大量的系统资源。单片机的缺点是资源有限,无法容纳下Internet 的TCP/IP 协议簇。因此单片机实现嵌入式接入Internet 技术的关键是如何在单片机等嵌入式设备的有限资源上实现Internet 的网络通信协议栈。其难点在于:如何利用单片机自身有限的资源对信息进行TCP/IP 协议处理,使之变成可以在Internet 上传输的IP 数据包。
Xilinx OLOGIC 资源-OLOGIC 资源 OLOGIC块在FPGA内的位置紧挨着IOB,其作用是FPGA通过IOB发送数据到器件外部的专用同步块。OLOGIC 资源的类型有OLOGIC2(位于HP I/O banks)和OLOGIC2(位于HR I/O banks)。在本文的下述论述中,除非特殊说明,OLOGIC2和OLOGIC3在功能和端口上都是相同的。
Xilinx FPGA底层资源架构与设计规范-这一次给大家分享的内容主要涉及Xilinx FPGA内的CLBs,SelectIO和Clocking资源,适合对FPGA设计有时序要求,却还没有足够了解的朋友。
基于NIOS处理器实现A/D数据采集电路的控制接口逻辑设计-在FPGA系统中,实现对外部A/D数据采集电路的控制接口逻辑,由于其逻辑功能不是很复杂,因此可采用自定义的方式。采用这种方法进行设计有两种途径。①从软件上去实现。这种方案将NIOS处理器作为一个主控制器,通过编写程序来控制数据转换电路。由于NIOS处理器的工作频率相对于外部设备来说要高出许多,故此种方法会造成CPU资源极大的浪费;②用FPGA 的逻辑资源来实现A/D采集电路的控制逻辑。FPGA有着丰富的逻辑资源和接口资源,在其中实现并行的数据采集很少会受到硬件资源的限制,在功能上,设计的接口控制逻辑相当于一个主控制器,它是针对具体的外部电路而实现的,容易满足要求、又能节约资源,提高系统性能。因此,采用硬件逻辑去实现控制将是一种较好的方式。
基于FPGA器件的内块存储器资源功能验证方法设计详解- 可编程逻辑阵列(FPGA)由于其具有可编程、上市时间短、灵活性及高吞吐量等特性广泛应用于数字信号处理、接口电路控制、图像处理及算法加速等领域,如在接口协议并串转换电路、图像算法加速电路及矩阵分解电路加速等领域应用广泛。随着微电子工艺技术的进步,FPGA器件向集成更多资源、更高速度及片上系统方向发展。FPGA器件内部具有丰富的可编程逻辑资源、输入输出口资源、锁相环及频率合成器资源以及嵌入式块存储器资源(BRAM)等,其中FPGA片内丰富的块存储器资源使数据与处理模块的延迟更短,极大地提升了FPGA器件的处理性能和吞吐量。
基于Xilinx XC4VFX40系列FPGA器件实现嵌入式系统的应用设计-FPGA是通过逻辑组合电路来实现各种功能的器件。由于FPGA内部集成了大量的逻辑资源和可配置的I/O引脚,加上独特的并行处理架构,可以轻松实现同时对多个外部设备的配置和管理,以及内外各种接口数据的传输。现在开发厂商又在FPGA 内部加入了大量的DSP和Block RAM资源,非常适合图像处理、数字信号处理等运算密集的应用,因此在这些领域取得了广泛的应用。