采用可编辑逻辑器件实现VGA显示系统的设计-VGA(视频图形阵列Video Graphics Array)是IBM在1987年随PS/2机一起推出的一种视频传输标准,具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。
基于EP2S30 FPGA芯片实现MAC接收控制器的设计-传统的测控网是将具有各种功能的仪器通过诸如VXI、CAN等专用总线连接起来构成一套完整的测控系统。现在看来,传统的测控网主要具有四个方面的不足:一、数据传输速率有限;二、传输距离有限;三、设备数量有限;四、成本高昂。传统的测控网已经很难满足人们对大数据量,远距离和低成本的要求。
Kintex7的SERDES的结构图 CPRI应用的应用-Kintex7系列的GTX,以其良好的性能和功耗表现,已经成为业界FPGA选型时的明星。由于其良好的DFE性能,它能提供高达12.5Gbps的过背板能力,能支持在插损高达30dB的信道上可靠传输。在众多的SERDES应用中,有些应用比较特别,那就是需要在实际运行过程中动态切换GTX的链路速率,如无线中的CRPI接口,需要同时支持9.8G,4.9G,2.4G等众多速率。
Stratix 10 SoC FPGA器件案例(应用、特性、电路图)-Intel公司的Stratix 10 SoC FPGA系列采用14nm三栅极(FinFET)和异构三维封装系统工艺技术,比以前高性能SoC FPGA提供2x核性能和节省多达70%的功耗, 单片核架构多达550万个逻辑单源(LE),多达96个全双工收发器通路,收发器数据速率高达28.3Gbps,嵌入eSRAM (45 Mbit)和M20K (20 kbit)SRAM存储器区块,基于PLL的分数合成和超低抖动LC振荡器,硬PCI Express Gen3 x16 IP区块,每个收发器通路中有硬10GBASE-KR/40GBASE-KR4 FEC,每个引脚的硬存储器控制器和PHY支持DDR4速率高达2666Mbps,以及硬定点和IEEE 754兼容
1394b数据传输有什么特点?如何利用FPGA设计一个1394b双向数据传输系统?-随着时代和技术的发展,对于数据总线带宽的要求越来越高,现有的总线标准越来越难以满足实际应用中对高总线速率的要求。先进的总线技术对于解决系统的瓶颈,提高系统性能起着至关重要的作用,同时为了实现批量数据的传输,IEEE又公布了支持更高传输速率的IEEE Std 1394b-2002(简称1394b)串行总线标准,高速可升级性可支持高达800 Mb/s下的数据传输速率,并且能够向后兼容先前的1394-1995和1394a标准。由于1394b是一种数据传输速率更高的串行总线标准,支持异步传输和等时传输两种传输方式。分层的软件和硬件模型可使其通信建立在事务层、链路层和物理层协议的基础之上。本文充分利用FPGA和DSP芯片的硬件资源,基丁1394b传输协议和规范的基础上,介绍139 4b数据传输系统的硬件设计结构、系统的工作流程和总线的配置过程。
基于DSP乘法模块的高效FPGA器件在无线基站中的使用情况详解-基于WiMax及其派生标准的新兴宽带无线协议需要越来越高的吞吐量和数据速率。这些协议提出的快速芯片速率和数字射频处理可以在使用FPGA方案的硬件上得到最佳的实现。
基于MEMS技术的IMU惯性测量单元的工作原理解析-惯性测量单元Inertial measurement unit,简称IMU,是测量物体三轴姿态角(或角速率)及加速度的装置。陀螺仪和加速度计,是惯性导航系统的核心装置。借助内置的加速度传感器和陀螺仪,IMU可测量来自三个方向的线性加速度和旋转角速率,通过解算可获得载体的姿态、速度和位移等信息。
MEMS加速计致力解决汽车安全问题-ABS系统必须增添额外的传感器来实现ESP功能,包括方向盘角度传感器、偏航速率传感器和低重力加速度传感器,这些传感器都用来测量车辆的动态响应。显然,这为飞思卡尔半导体这样的MEMS传感器制造商创造了新的商机。