AD9850与单片机接口电路的正弦信号发生器设计-随着数字大规模集成电路技术的发展,采用数字电路的直接数字频率合成技术(DDS)具有频率转换速度快。频率分辨率高。相位可控。频率稳定度高等优点。频率转换速度快。频率分辨率高的信号源在现代电子通讯。航空航天。自动控制等领域中是必不可少的,因此DDS信号源在上述领域获得广泛的应用。
基于单片机的直接数字频率合成详解-频率合成技术迄今已经历了三代:直接频率合成技术、锁相环频率合成技术、直接数字式频率合成技术。直接数字式频率合成(Direct Digital Frequency Synthesis,DDFS或DDS)是第三代频率合成技术的标志,他的主要特点是计算机参与频率合成,既可以用软件来实现,也可以用硬件来实现,或二者结合。直接数字式频率合成器的最大优点就是频率切换的速度极快(可达几微秒),并且频率、相位和幅度都可控,输出频率稳定度可达系统时钟的稳定度量级,易于集成化,更主要的是由于计算机参与频率合成,故可充分发挥软件的作用。本文主要介绍的是基于单片机和CPLD实现直接数字频率合成详解,具体的跟随小编一起来了解一下。
基于AVR单片机的PWM功能设计-用AVR单片机来产生正弦波信号 使用AVR定时/计数器的PWM功能设计要点 一、定时/计数器PWM设计要点 根据PWM的特点,在使用ATmega128的定时/计数器设计输出PWM时应注意以下几点: 1.首先应根据实际的情况,确定需要输出的PWM频率范围,这个频率与控制的对象有关。如输出PWM波用于控制灯的亮度,由于人眼不能分辨42Hz以上的频率,所以PWM的频率应高于42Hz,否则人眼会察觉到灯的闪烁。
基于单片机80C196KB和可编程逻辑器件EPM7128SLC在采集显示系统中的设计-该系统中待采集显示电压信号共16路,动态电压范围为-22~+27 V。由于这些电压信号变化频率较低,或者认为频率无变化,且检测系统只关心其电压值,所以在低采样率下就可满足系统要求。根据需求,系统设计的采样率即显示刷新速率在1.56 k/s以上。
PIC单片机开发的经验、技巧总结分享-具体做法是在闲置的一个I/O脚(如RB1)和OSC1管脚之间跨接一电阻(R1),如图1所示。低速状态置RB1=0。需进行快速运算时先置RB1= 1,由于充电时,电容电压上升得快,工作频率增高,运算时间减少,运算结束又置RB1=0,进入低速、低功耗状态。工作频率的变化量依R1的阻值而定(注意R1不能选得太小,以防振荡电路不起振,一般选取大于5kΩ)。