第四篇:只需延时服务的协作式的内核
Cooperative Multitasking
前后台体系,协作式内核体系,与占先式内核体系,有什么不同呢?
记住在21IC上看过这样的比方,“你(小工)在用厕所,司理在外面排榜首,老板在外面排第二。假如是前后台,不管是谁,都有必要按排队的次第运用厕所;假如是协作式,那么能够等你用完厕所,老板就要比司理先进入;假如是占先式,只需有更高档的人在外面等,那么厕所里无论是谁,都要榜首时刻让出来,让最高档其他人先用。”
#include <avr/io.h>
#include
#include
unsigned char Stack[200];
register unsigned char OSRdyTbl asm(“r2”); //使命运转安排妥当表
register unsigned char OSTaskRunningPrio asm(“r3”); //正在运转的使命
#define OS_TASKS 3 //设定运转使命的数量
struct TaskCtrBlock //使命操控块
{
unsigned int OSTaskStackTop; //保存使命的仓库顶
unsigned int OSWaitTick; //使命延时时钟
} TCB[OS_TASKS+1];
//避免被编译器占用
register unsigned char tempR4 asm(“r4”);
register unsigned char tempR5 asm(“r5”);
register unsigned char tempR6 asm(“r6”);
register unsigned char tempR7 asm(“r7”);
register unsigned char tempR8 asm(“r8”);
register unsigned char tempR9 asm(“r9”);
register unsigned char tempR10 asm(“r10”);
register unsigned char tempR11 asm(“r11”);
register unsigned char tempR12 asm(“r12”);
register unsigned char tempR13 asm(“r13”);
register unsigned char tempR14 asm(“r14”);
register unsigned char tempR15 asm(“r15”);
register unsigned char tempR16 asm(“r16”);
register unsigned char tempR16 asm(“r17”);
//树立使命
void OSTaskCreate(void (*Task)(void),unsigned char *Stack,unsigned char TaskID)
{
unsigned char i;
*Stack–=(unsigned int)Task>>8; //将使命的地址高位压入仓库,
*Stack–=(unsigned int)Task; //将使命的地址低位压入仓库,
*Stack–=0x00; //R1 __zero_reg__
*Stack–=0x00; //R0 __tmp_reg__
*Stack–=0x80; //SREG在使命中,敞开大局中止
for(i=0;i<14;i++) //在avr-libc中的FAQ中的What registers are used by the C compiler?
*Stack–=i; //描绘了寄存器的效果
TCB[TaskID].OSTaskStackTop=(unsigned int)Stack; //将人工仓库的栈顶,保存到仓库的数组中
OSRdyTbl|=0x01< }
//开端使命调度,从最低优先级的使命的开端
void OSStartTask()
{
OSTaskRunningPrio=OS_TASKS;
SP=TCB[OS_TASKS].OSTaskStackTop+17;
__asm__ __volatile__( “reti” “\n\t” );
}
//进行使命调度
void OSSched(void)
{
//依据中止时保存寄存器的次第入栈,模仿一次中止后,入栈的状况
__asm__ __volatile__(“PUSH __zero_reg__ \n\t”); //R1
__asm__ __volatile__(“PUSH __tmp_reg__ \n\t”); //R0
__asm__ __volatile__(“IN __tmp_reg__,__SREG__ \n\t”); //保存状况寄存器SREG
__asm__ __volatile__(“PUSH __tmp_reg__ \n\t”);
__asm__ __volatile__(“CLR __zero_reg__ \n\t”); //R0从头清零
__asm__ __volatile__(“PUSH R18 \n\t”);
__asm__ __volatile__(“PUSH R19 \n\t”);
__asm__ __volatile__(“PUSH R20 \n\t”);
__asm__ __volatile__(“PUSH R21 \n\t”);
__asm__ __volatile__(“PUSH R22 \n\t”);
__asm__ __volatile__(“PUSH R23 \n\t”);
__asm__ __volatile__(“PUSH R24 \n\t”);
__asm__ __volatile__(“PUSH R25 \n\t”);
__asm__ __volatile__(“PUSH R26 \n\t”);
__asm__ __volatile__(“PUSH R27 \n\t”);
__asm__ __volatile__(“PUSH R30 \n\t”);
__asm__ __volatile__(“PUSH R31 \n\t”);
__asm__ __volatile__(“PUSH R28 \n\t”); //R28与R29用于树立在仓库上的指针
__asm__ __volatile__(“PUSH R29 \n\t”); //入栈完结
TCB[OSTaskRunningPrio].OSTaskStackTop=SP; //将正在运转的使命的仓库底保存
unsigned char OSNextTaskID; //在现有仓库上开设新的空间
for (OSNextTaskID = 0; //进行使命调度
OSNextTaskID < OS_TASKS && !(OSRdyTbl & (0x01< OSNextTaskID++); OSTaskRunningPrio = OSNextTaskID ;
cli(); //维护仓库转化
SP=TCB[OSTaskRunningPrio].OSTaskStackTop;
sei();
//依据中止时的出栈次第
__asm__ __volatile__(“POP R29 \n\t”);
__asm__ __volatile__(“POP R28 \n\t”);
__asm__ __volatile__(“POP R31 \n\t”);
__asm__ __volatile__(“POP R30 \n\t”);
__asm__ __volatile__(“POP R27 \n\t”);
__asm__ __volatile__(“POP R26 \n\t”);
__asm__ __volatile__(“POP R25 \n\t”);
__asm__ __volatile__(“POP R24 \n\t”);
__asm__ __volatile__(“POP R23 \n\t”);
__asm__ __volatile__(“POP R22 \n\t”);
__asm__ __volatile__(“POP R21 \n\t”);
__asm__ __volatile__(“POP R20 \n\t”);
__asm__ __volatile__(“POP R19 \n\t”);
__asm__ __volatile__(“POP R18 \n\t”);
__asm__ __volatile__(“POP __tmp_reg__ \n\t”); //SERG出栈并康复
__asm__ __volatile__(“OUT __SREG__,__tmp_reg__ \n\t”); //
__asm__ __volatile__(“POP __tmp_reg__ \n\t”); //R0出栈
__asm__ __volatile__(“POP __zero_reg__ \n\t”); //R1出栈
//中止时出栈完结
}
void OSTimeDly(unsigned int ticks)
{
if(ticks) //当延时有用
{
OSRdyTbl &= ~(0x01< TCB[OSTaskRunningPrio].OSWaitTick=ticks; OSSched(); //从头调度 } }
void TCN0Init(void) //计时器0
{
TCCR0 = 0;
TCCR0 |= (1< TIMSK |= (1< TCNT0 = 100; //置计数起始值 } SIGNAL(SIG_OVERFLOW0) { unsigned char i;
for(i=0;i { if(TCB[i].OSWaitTick) { TCB[i].OSWaitTick–; if(TCB[i].OSWaitTick==0) //当使命时钟届时,有必要是由定时器减时的才行 { OSRdyTbl |= (0x01<
} } }
TCNT0=100;
}
void Task0()
{
unsigned int j=0;
while(1)
{
PORTB=j++;
OSTimeDly(2);
}
}
void Task1()
{
unsigned int j=0;
while(1)
{
PORTC=j++;
OSTimeDly(4);
}
}
void Task2()
{
unsigned int j=0;
while(1)
{
PORTD=j++;
OSTimeDly(8);
}
}
void TaskScheduler()
{
while(1)
{
OSSched(); //重复进行调度
}
}
int main(void)
{
TCN0Init();
OSRdyTbl=0;
OSTaskRunningPrio=0;
OSTaskCreate(Task0,&Stack[49],0);
OSTaskCreate(Task1,&Stack[99],1);
OSTaskCreate(Task2,&Stack[149],2);
OSTaskCreate(TaskScheduler,&Stack[199],OS_TASKS);
OSStartTask();
}
在上面的比如中,全部变得很简单,三个正在运转的主使命,都经过延时服务,自动抛弃对CPU的操控权。
在时刻中止中,对各个使命的的延时进行计时,假如某个使命的延时完毕,将使命从头在安排妥当表中置位。
最初级的体系使命TaskScheduler(),在三个主使命在抛弃对CPU的操控权后开端不断地进行调度。假如某个使命在安排妥当表中置位,经过调度,进入最高档其他使命中持续运转。