您的位置 首页 被动

S3C2440 2440init.s剖析第二篇(一)

S3C24402440init.s分析第二篇(一);=========================================;NAME:2440INIT.S;DESC:Cstartupcod

S3C2440 2440init.s剖析第二篇(一)

;=========================================
; NAME: 2440INIT.S
; DESC: C start up codes
; Configure memory, ISR ,stacks
; Initialize C-variables
; HISTORY:
; 2002.02.25:kwtark: ver 0.0
; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode
; 2003.03.14:DonGo: Modified for 2440.
;=========================================

;首要,发动代码界说了一些常量
GET option.inc
GET memcfg.inc
GET 2440addr.inc

BIT_SELFREFRESH EQU (1<<22) ;处理器形式常量
USERMODE EQU 0x10
FIQMODE EQU 0x11
IRQMODE EQU 0x12
SVCMODE EQU 0x13
ABORTMODE EQU 0x17
UNDEFMODE EQU 0x1b
MODEMASK EQU 0x1f
NOINT EQU 0xc0

;界说处理器各形式下仓库地址常量
UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~
SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~
UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~
AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~
IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~
FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~

;查看在tasm.exe里是否设置了选用THUMB(16位)代码(armasm -16 …@ADS 1.0)
GBLL THUMBCODE ;界说THUMBCODE全局变量
[ {CONFIG} = 16 ;假如发现是才用16位代码的话
THUMBCODE SETL {TRUE} ;把THUMBCODE设置为TURE
CODE32 ;把处理器重新设置成为ARM形式
| ;假如处理器现在便是ARM形式
THUMBCODE SETL {FALSE} ;把THUMBCODE设置为FALSE就行了
]

MACRO ;一个根据THUMBCODE把PC寄存的值保存到LR的宏
MOV_PC_LR
[ THUMBCODE
bx lr ;在ARM形式中要运用BX指令转跳到THUMB指令,并转化形式
|
mov pc,lr ;假如方针地址也是ARM指令的话就选用这种办法
]
MEND

MACRO ;和上面的宏相同,仅仅多了一个持平的条件
MOVEQ_PC_LR
[ THUMBCODE
bxeq lr
|
moveq pc,lr
]
MEND

;=======================================================================================
;下面这个宏是用于榜首次查表进程的完结中止向量的重定向,假如你比较仔细的话便是发现
;在_ISR_STARTADDRESS=0x33FF_FF00里界说的榜首级中止向量表是选用型如Handle***的办法的.
;而在程序的ENTRY处(程序开端处)选用的是b Handler***的办法.
;在这儿Handler***便是经过HANDLER这个宏和Handle***进立联络的.
;这种办法的长处便是正真界说的向量数据在内存空间里,而不是在ENTRY处的ROM(FLASH)空间里,
;这样,咱们就能够在程序里灵敏的改动向量的数据了.
;========================================================================================

MACRO
$HandlerLabel HANDLER $HandleLabel

$HandlerLabel
sub sp,sp,#4 ;削减sp(用于寄存转跳地址)
stmfd sp!,{r0} ;把作业寄存器压入栈(lr does not push because it return to original address)
ldr r0,=$HandleLabel;将HandleXXX的址址放入r0
ldr r0,[r0] ;把HandleXXX所指向的内容(也便是中止程序的进口)放入r0
str r0,[sp,#4] ;把中止服务程序(ISR)压入栈
ldmfd sp!,{r0,pc} ;用出栈的办法康复r0的原值和为pc设定新值(也就完结了到ISR的转跳)
MEND

;=========================================================================================
;在这儿用IMPORT伪指令(和c言语的extren相同)引进|Image$$RO$$Base|,|Image$$RO$$Limit|…
;这些变量是经过ADS的工程设置晒干设定的RO Base和RW Base设定的,
;终究由编译脚本和衔接程序导入程序.
;那为什么要引进这玩意呢,最简略的用途是能够根据它们劳动自已
;==========================================================================================
IMPORT |Image$$RO$$Base| ; ROM code(也便是代码)的开端地址
IMPORT |Image$$RO$$Limit| ; ROM code的完毕地址 (=ROM data的开端地址)
IMPORT |Image$$RW$$Base| ; 要初始化的RAM的开端地址
IMPORT |Image$$ZI$$Base| ; area(需求清零的RAM区域)的开端地址
IMPORT |Image$$ZI$$Limit| ; area的完毕地址

;这儿引进一些在其它文件中完结在函数,包含为咱们所熟知的main函数
IMPORT MMU_SetAsyncBusMode
IMPORT MMU_SetFastBusMode ;hzh

IMPORT Main ; The main entry of mon program

;从这儿开端便是正真的代码进口了!
AREA Init,CODE,READONLY ;这表明下面的是一个名为Init的代码段

ENTRY ;界说程序的进口(调试用)

EXPORT __ENTRY ;导出符号_ENTRY,但在那用到就还没查明
__ENTRY
ResetEntry
;1)The code, which converts to Big-endian, should be in little endian code.
;2)The following little endian code will be compiled in Big-Endian mode.
; The code byte order should be changed as the memory bus width.
;3)The pseudo instruction,DCD can not be used here because the linker generates error.
ASSERT :DEF:ENDIAN_CHANGE
[ ENDIAN_CHANGE ;下面是巨细端的一个判别,在Option.inc里现已设为FALSE
ASSERT :DEF:ENTRY_BUS_WIDTH
[ ENTRY_BUS_WIDTH=32
b ChangeBigEndian ;DCD 0xea000007
]

[ ENTRY_BUS_WIDTH=16
andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00
]

[ ENTRY_BUS_WIDTH=8
streq r0,[r0,-r10,ror #1] ;DCD 0x070000ea
]
|
b ResetHandler ;设成FALSE的话就来到这了,转跳到复位程序进口
]
b HandlerUndef ;转跳到Undefined mode程序进口
b HandlerSWI ;转跳到SWI 中止程序进口
b HandlerPabort ;转跳到PAbort(指令反常)程序进口
b HandlerDabort ;转跳到DAbort(数据反常)程序进口
b . ;保存
b HandlerIRQ ;转跳到IRQ 中止程序进口
b HandlerFIQ ;转跳到FIQ 中止程序进口

;@0x20
b EnterPWDN ; Must be @0x20.

;==================================================================================
;下面是改动巨细端的程序,这儿选用直接界说机器码的办法,至说为什么这么做就得问三星了
;横竖咱们程序里这段代码也不会去碑文,不必去管它
;==================================================================================
ChangeBigEndian
;@0x24
[ ENTRY_BUS_WIDTH=32
DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0
DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian
DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0
]
[ ENTRY_BUS_WIDTH=16
DCD 0x0f10ee11
DCD 0x0080e380
DCD 0x0f10ee01
]
[ ENTRY_BUS_WIDTH=8
DCD 0x100f11ee
DCD 0x800080e3
DCD 0x100f01ee
]
DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode.
DCD 0xffffffff
DCD 0xffffffff
DCD 0xffffffff
DCD 0xffffffff
b ResetHandler

;如上所说,这儿选用HANDLER宏去树立Hander***和Handle***之间的联络
HandlerFIQ HANDLER HandleFIQ
HandlerIRQ HANDLER HandleIRQ
HandlerUndef HANDLER HandleUndef
HandlerSWI HANDLER HandleSWI
HandlerDabort HANDLER HandleDabort
HandlerPabort HANDLER HandlePabort

;===================================================================================
;呵呵,来了来了.好戏来了,这一段程序便是用来进行第2次查表的进程了.
;假如说榜首次查表是由硬件来完结的,那这一次查表便是由软件来完结的了.
;为什么要查两次表??
;没有办法,ARM把一切的中止都概括成一个IRQ中止反常和一个FIRQ中止反常
;榜首次查表主要是查出是什么反常,可咱们总要知道是这个中止反常中的什么中止呀!
;没办法了,再查一次表呗!
;===================================================================================
IsrIRQ
sub sp,sp,#4 ;给PC寄存器保存
stmfd sp!,{r8-r9} ;把r8-r9压入栈

ldr r9,=INTOFFSET ;把INTOFFSET的地址装入r9
ldr r9,[r9] ;把INTOFFSET的值装入r9
ldr r8,=HandleEINT0 ;这便是咱们第二个中止向量表的进口的,先装入r8
;===================================================================================
;哈哈,这查表办法够好了吧,r8(进口)+index*4(别望了一条指令是4 bytes的喔),
;这不便是咱们要找的那一项了吗.找到了表项,下一步做什么?必定先装入了!
;==================================================================================
add r8,r8,r9,lsl #2
ldr r8,[r8] ;装入中止服务程序的进口
str r8,[sp,#8] ;把进口也入栈,预备用旧招
ldmfd sp!,{r8-r9,pc} ;施招,弹出栈,哈哈,顺便把r8弹出到PC,O了,跳转成功!

LTORG ;声明文字池,咱们咱们用了ldr伪指令

;==============================================================================
; ENTRY(好了,咱们的CPU要在这复位了.)
;==============================================================================
ResetHandler
ldr r0,=WTCON ;1.关看门狗
ldr r1,=0x0
str r1,[r0]

ldr r0,=INTMSK
ldr r1,=0xffffffff ;2.关中止
str r1,[r0]

ldr r0,=INTSUBMSK
ldr r1,=0x7fff ;3.关子中止
str r1,[r0]

[ {FALSE} ;4.得有些一共了,该点点LED灯了,不过被FALSE掉了.
;rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);
; Led_Display
ldr r0,=GPFCON
ldr r1,=0x5500
str r1,[r0]
ldr r0,=GPFDAT
ldr r1,=0x10
str r1,[r0]
]

;5.为了削减PLL的lock time, 调整LOCKTIME寄存器.
ldr r0,=LOCKTIME
ldr r1,=0xffffff
str r1,[r0]

[ PLL_ON_START ;6.下面就来设置PLL了,你的板快不快就看这了!!
; Added for confirm clock divide. for 2440.
; 设定Fclk:Hclk:Pclk
ldr r0,=CLKDIVN
ldr r1,=CLKDIV_VAL ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4,
str r1,[r0] ; 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.

;===============================================================================
;MMU_SetAsyncBusMode 和 MMU_SetFastBusMode 都在4K代码以上,
;假如你想你编译出来的程序能在NAND上运转的话,就不要在这调用这两函数了.
;假如你不要求的话,你就用把.啥事没有.
;为什么是4K,问三星吧,就供给4K的内部SRAM,要是供给400K多好呀.
;好了,好了,4K就4K吧,不能用这两函数,自己写还不行吗,下面的代码这这么来了,
;完结和上面两函数相同的功用.
;===============================================================================
; [ CLKDIV_VAL>1 ; 意思是 Fclk:Hclk 不是 1:1.
; bl MMU_SetAsyncBusMode
; |
; bl MMU_SetFastBusMode ; default value.
; ]

[ CLKDIV_VAL>1 ; 意思是 Fclk:Hclk 不是 1:1.
mrc p15,0,r0,c1,c0,0
orr r0,r0,#0xc0000000;R1_nF:OR:R1_iA
mcr p15,0,r0,c1,c0,0
|
mrc p15,0,r0,c1,c0,0
bic r0,r0,#0xc0000000;R1_iA:OR:R1_nF
mcr p15,0,r0,c1,c0,0
]

;装备 UPLL
ldr r0,=UPLLCON
ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV)
str r1,[r0]
nop ; Caution: After UPLL setting, at least 7-clocks
nop ; delay must be inserted for setting hardware be completed.
nop
nop
nop
nop
nop
;装备 MPLL 必定要使最终的频率为16.9344MHz,不然你甭想用USB接口了,哈哈.
ldr r0,=MPLLCON
ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV)
str r1,[r0]
]

;查看是否从SLEEP形式中康复
ldr r1,=GSTATUS2
ldr r0,[r1]
tst r0,#0x2
;假如是从SLEEP形式中康复, 转跳到SLEEP_WAKEUP.
bne WAKEUP_SLEEP

EXPORT StartPointAfterSleepWakeUp ;导出符号StartPointAfterSleepWakeUp
StartPointAfterSleepWakeUp

;===============================================================================
;设置内存操控器等寄存器的值,咱们这些寄存器是接连摆放的,所以选用如下办法对这些
;寄存器进行接连设置.其间用到了SMRDATA的数据,这在代码后边有界说
;===============================================================================
;ldr r0,=SMRDATA
adrl r0, SMRDATA ;be careful!, hzh
ldr r1,=BWSCON ;BWSCON 地址
add r2, r0, #52 ;SMRDATA数据的完毕地址,共有52字节的数据

0
ldr r3, [r0], #4
str r3, [r1], #4
cmp r2, r0
bne %B0

;================================================================================
;假如 EINT0 发生(这中止便是咱们按键发生的), 就铲除SDRAM ,不过如同没人会在这个时分按
;================================================================================
; check if EIN0 button is pressed

ldr r0,=GPFCON
ldr r1,=0x0
str r1,[r0]
ldr r0,=GPFUP
ldr r1,=0xff
str r1,[r0]

ldr r1,=GPFDAT
ldr r0,[r1]
bic r0,r0,#(0x1e<<1) ; bit clear
tst r0,#0x1
bne %F1 ;假如没有按,就跳到后边的1标号处

; 这便是清零内存的代码

ldr r0,=GPFCON
ldr r1,=0x55aa
str r1,[r0]
; ldr r0,=GPFUP
; ldr r1,=0xff
; str r1,[r0]
ldr r0,=GPFDAT
ldr r1,=0x0
str r1,[r0] ;LED=****

mov r1,#0
mov r2,#0
mov r3,#0
mov r4,#0
mov r5,#0
mov r6,#0
mov r7,#0
mov r8,#0

ldr r9,=0x4000000 ;64MB
ldr r0,=0x30000000
0
stmia r0!,{r1-r8}
subs r9,r9,#32
bne %B0

;到这就完毕了.

1
bl InitStacks ;初始化仓库
;bl Led_Test ;又是LED,注掉了

;=======================================================================
; 哈哈,下面又有看头了,这个初始化程序如同被名曰hzh的高手改正
; 能在NOR NAND 还有内存中运转,当然了,在内存中运转最简略了.
; 在NOR NAND中运转的话都要先把自己拷到内存中.
; 此外,还记得上面说到的|Image$$RO$$Base|,|Image$$RO$$Limit|…吗?
; 这便是劳动的根据了!!!
;=========================================================================
ldr r0, =BWSCON
ldr r0, [r0]
ands r0, r0, #6 ;OM[1:0] != 0, 从NOR FLash发动或直接在内存运转
bne copy_proc_beg ;不读取NAND FLASH
adr r0, ResetEntry ;OM[1:0] == 0, 不然,为从NAND FLash发动
cmp r0, #0 ;再比较进口是否为0地址处
;==========================================================================
;假如不是,则一共主板设置了从NAND发动,但这个程序咱们其它原因,
;并没有从NAND从发动,这种状况最有或许的原因便是用仿真器.
;==========================================================================
bne copy_proc_beg ;这种状况也不读取NAND FLASH.
;nop
;===========================================================
nand_boot_beg ;这一段代码完结从NAND读代码到RAM
mov r5, #NFCONF ;首要设定NAND的一些操控寄存器
;set timing value
ldr r0, =(7<<12)|(7<<8)|(7<<4)
str r0, [r5]
;enable control
ldr r0, =(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0)
str r0, [r5, #4]

bl ReadNandID ;按着读取NAND的ID号,成果保存在r5里
mov r6, #0 ;r6设初值0.
ldr r0, =0xec73 ;希望的NAND ID号
cmp r5, r0 ;这儿进行比较
beq %F1 ;持平的话就跳到下一个1标号处
ldr r0, =0xec75 ;这是另一个希望值
cmp r5, r0
beq %F1 ;持平的话就跳到下一个1标号处
mov r6, #1 ;不持平了,设置r6=1.
1
bl ReadNandStatus ;读取NAND状况,成果放在r1里

mov r8, #0 ;r8设初值0,含义为页号
ldr r9, =ResetEntry ;r9设初值为初始化程序进口地址
;=========================================================================
; 留意,在这儿运用的是ldr伪指令,而不是上面用的adr伪指令,它加载的是ResetEntry
; 的决对地址,也便是咱们希望的RAM中的地址,在这儿,它和|Image$$RO$$Base|相同
; 也便是说,我如咱们编译程序时RO BASE指定的地址在RAM里,而把生成的文件拷到
; NAND里运转,由ldr加载的r9的值仍是定位在内存.
;=========================================================================
2
ands r0, r8, #0x1f ;凡r8为0x1f(32)的整数倍-1,eq有用,ne无效
bne %F3 ;这句的意思是对每个块(32页)进行检错
mov r0, r8 ;r8->r0
bl CheckBadBlk ;查看NAND的坏区
cmp r0, #0 ;比较r0和0
addne r8, r8, #32 ;存在坏块的话就越过这个坏块
bne %F4 ;没有的话就跳到标号4处
3
mov r0, r8 ;当时页号->r0
mov r1, r9 ;当时方针地址->r1
bl ReadNandPage ;读取该页的NAND数据到RAM
add r9, r9, #512 ;每一页的巨细是512Bytes
add r8, r8, #1 ;r8指向下一页
4
cmp r8, #256 ;比较是否读完256页即128KBytes
bcc %B2 ;假如r8小于256(没读完),就回来前面的标号2处

mov r5, #NFCONF ;DsNandFlash
ldr r0, [r5, #4]
bic r0, r0, #1
str r0, [r5, #4]
ldr pc, =copy_proc_beg ;调用copy_proc_beg
;===========================================================
copy_proc_beg
adr r0, ResetEntry ;ResetEntry值->r0
ldr r2, BaseOfROM ;BaseOfROM值(后边有界说)->r2
cmp r0, r2 ;比较r0和r2
ldreq r0, TopOfROM ;假如持平的话(在内存运转),TopOfROM->r0
beq InitRam ;一起跳到InitRam

;=========================================================
;下面这个是针对代码在NOR FLASH时的劳动办法
;功用为把从ResetEntry起,TopOfROM-BaseOfROM巨细的数据拷到BaseOfROM
;TopOfROM和BaseOfROM为|Image$$RO$$Limit|和|Image$$RO$$Base|
;|Image$$RO$$Limit|和|Image$$RO$$Base|由衔接器生成
;为生成的代码的代码段运转时的起启和停止地址
;BaseOfBSS和BaseOfZero为|Image$$RW$$Base|和|Image$$ZI$$Base|
;|Image$$RW$$Base|和|Image$$ZI$$Base|也是由衔接器生成
;两者之间便是初始化数据的寄存地放
;=======================================================

ldr r3, TopOfROM
0
ldmia r0!, {r4-r7}
stmia r2!, {r4-r7}
cmp r2, r3
bcc %B0

sub r2, r2, r3 ;r2=BaseOfROM-TopOfROM=(-)代码长度
sub r0, r0, r2 ;r0=ResetEntry-(-)代码长度=ResetEntry+代码长度

InitRam
ldr r2, BaseOfBSS ;BaseOfBSS->r2
ldr r3, BaseOfZero ;BaseOfZero->r3
0
cmp r2, r3 ;比较BaseOfBSS和BaseOfZero
ldrcc r1, [r0], #4 ;要是r21 ; means Fclk:Hclk is not 1:1.
; bl MMU_SetAsyncBusMode
; |
; bl MMU_SetFastBusMode ; default value.
; ]

;bl Led_Test

;===========================================================
; 进入C言语前的最终一步了,便是把咱们用说查二级向量表
; 的中止例程安装到一级向量表(反常向量表)里.
ldr r0,=HandleIRQ ;This routine is needed
ldr r1,=IsrIRQ ;if there is not subs pc,lr,#4 at 0x18, 0x1c
str r1,[r0]

; ;Copy and paste RW data/zero initialized data
; ldr r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
; ldr r1, =|Image$$RW$$Base| ; and RAM copy
; ldr r3, =|Image$$ZI$$Base|
;
; ;Zero init base => top of initialised data
; cmp r0, r1 ; Check that they are different
; beq %F2
;1
; cmp r1, r3 ; Copy init data
; ldrcc r2, [r0], #4 ;–> LDRCC r2, [r0] + ADD r0, r0, #4
; strcc r2, [r1], #4 ;–> STRCC r2, [r1] + ADD r1, r1, #4
; bcc %B1
;2
; ldr r1, =|Image$$ZI$$Limit| ; Top of zero init segment
; mov r2, #0
;3
; cmp r3, r1 ; Zero init
; strcc r2, [r3], #4
; bcc %B3

声明:本文内容来自网络转载或用户投稿,文章版权归原作者和原出处所有。文中观点,不代表本站立场。若有侵权请联系本站删除(kf@86ic.com)https://www.86ic.net/ziliao/beidong/264269.html

为您推荐

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部